Search results for "Microbiology and Infectious Disease"

showing 2 items of 2 documents

2018

Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway…

Keratinocytes0301 basic medicineCarcinogenesisvirusesEndocytic cycle610 MedizinTetraspanin610 Medical sciencesEpidermal growth factor receptorBiology (General)InternalizationPapillomaviridaemedia_commonHuman papillomavirus 16Microbiology and Infectious DiseaseADAM17General NeuroscienceQRoncogenic PapillomavirusGeneral MedicineEndocytosisCell biologyErbB ReceptorsCapsidMedicinemicrodomainsResearch ArticleHumanQH301-705.5MAP Kinase Signaling SystemSciencemedia_common.quotation_subject030106 microbiologyADAM17 ProteinTetraspanin 24BiologyGeneral Biochemistry Genetics and Molecular BiologyVirus03 medical and health sciencesCell surface receptorViral entrygrowth factorsHumansGeneral Immunology and MicrobiologyCell MembranePapillomavirus InfectionsVirionentry receptor complexCell BiologyVirus Internalizationtetraspanin030104 developmental biologybiology.proteinHeLa CellseLife
researchProduct

Globally defining the effects of mutations in a picornavirus capsid

2021

The capsids of non-enveloped viruses are highly multimeric and multifunctional protein assemblies that play key roles in viral biology and pathogenesis. Despite their importance, a comprehensive understanding of how mutations affect viral fitness across different structural and functional attributes of the capsid is lacking. To address this limitation, we globally define the effects of mutations across the capsid of a human picornavirus. Using this resource, we identify structural and sequence determinants that accurately predict mutational fitness effects, refine evolutionary analyses, and define the sequence specificity of key capsid-encoded motifs. Furthermore, capitalizing on the derive…

PicornavirusViral proteinQH301-705.5Sciencevirusesmedicine.medical_treatmentPicornaviridaeComputational biologymedicine.disease_causeGenomeGeneral Biochemistry Genetics and Molecular BiologyVirusImmune systemcapsidmedicineSingle amino acidBiology (General)GeneTropismHost proteinGeneticsEvolutionary BiologyMicrobiology and Infectious DiseaseMutationmutational fitness effectsProteaseGeneral Immunology and MicrobiologybiologyGeneral NeuroscienceQRviral proteaseGeneral Medicinebiochemical phenomena metabolism and nutritionbiology.organism_classificationViruspicornavirusViral proteaseCapsidMutationMedicineCapsid ProteinsHuman genomeDeep mutational scanningResearch ArticleHuman
researchProduct